3.457 \(\int \frac{\sec ^6(c+d x)}{a+b \tan ^2(c+d x)} \, dx\)

Optimal. Leaf size=77 \[ \frac{(a-b)^2 \tan ^{-1}\left (\frac{\sqrt{b} \tan (c+d x)}{\sqrt{a}}\right )}{\sqrt{a} b^{5/2} d}-\frac{(a-2 b) \tan (c+d x)}{b^2 d}+\frac{\tan ^3(c+d x)}{3 b d} \]

[Out]

((a - b)^2*ArcTan[(Sqrt[b]*Tan[c + d*x])/Sqrt[a]])/(Sqrt[a]*b^(5/2)*d) - ((a - 2*b)*Tan[c + d*x])/(b^2*d) + Ta
n[c + d*x]^3/(3*b*d)

________________________________________________________________________________________

Rubi [A]  time = 0.091478, antiderivative size = 77, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.13, Rules used = {3675, 390, 205} \[ \frac{(a-b)^2 \tan ^{-1}\left (\frac{\sqrt{b} \tan (c+d x)}{\sqrt{a}}\right )}{\sqrt{a} b^{5/2} d}-\frac{(a-2 b) \tan (c+d x)}{b^2 d}+\frac{\tan ^3(c+d x)}{3 b d} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^6/(a + b*Tan[c + d*x]^2),x]

[Out]

((a - b)^2*ArcTan[(Sqrt[b]*Tan[c + d*x])/Sqrt[a]])/(Sqrt[a]*b^(5/2)*d) - ((a - 2*b)*Tan[c + d*x])/(b^2*d) + Ta
n[c + d*x]^3/(3*b*d)

Rule 3675

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol] :> With[
{ff = FreeFactors[Tan[e + f*x], x]}, Dist[ff/(c^(m - 1)*f), Subst[Int[(c^2 + ff^2*x^2)^(m/2 - 1)*(a + b*(ff*x)
^n)^p, x], x, (c*Tan[e + f*x])/ff], x]] /; FreeQ[{a, b, c, e, f, n, p}, x] && IntegerQ[m/2] && (IntegersQ[n, p
] || IGtQ[m, 0] || IGtQ[p, 0] || EqQ[n^2, 4] || EqQ[n^2, 16])

Rule 390

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Int[PolynomialDivide[(a + b*x^n)
^p, (c + d*x^n)^(-q), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && IGtQ[p, 0] && ILt
Q[q, 0] && GeQ[p, -q]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\sec ^6(c+d x)}{a+b \tan ^2(c+d x)} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{\left (1+x^2\right )^2}{a+b x^2} \, dx,x,\tan (c+d x)\right )}{d}\\ &=\frac{\operatorname{Subst}\left (\int \left (-\frac{a-2 b}{b^2}+\frac{x^2}{b}+\frac{a^2-2 a b+b^2}{b^2 \left (a+b x^2\right )}\right ) \, dx,x,\tan (c+d x)\right )}{d}\\ &=-\frac{(a-2 b) \tan (c+d x)}{b^2 d}+\frac{\tan ^3(c+d x)}{3 b d}+\frac{(a-b)^2 \operatorname{Subst}\left (\int \frac{1}{a+b x^2} \, dx,x,\tan (c+d x)\right )}{b^2 d}\\ &=\frac{(a-b)^2 \tan ^{-1}\left (\frac{\sqrt{b} \tan (c+d x)}{\sqrt{a}}\right )}{\sqrt{a} b^{5/2} d}-\frac{(a-2 b) \tan (c+d x)}{b^2 d}+\frac{\tan ^3(c+d x)}{3 b d}\\ \end{align*}

Mathematica [A]  time = 0.330773, size = 74, normalized size = 0.96 \[ \frac{\frac{3 (a-b)^2 \tan ^{-1}\left (\frac{\sqrt{b} \tan (c+d x)}{\sqrt{a}}\right )}{\sqrt{a}}+\sqrt{b} \tan (c+d x) \left (-3 a+b \sec ^2(c+d x)+5 b\right )}{3 b^{5/2} d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^6/(a + b*Tan[c + d*x]^2),x]

[Out]

((3*(a - b)^2*ArcTan[(Sqrt[b]*Tan[c + d*x])/Sqrt[a]])/Sqrt[a] + Sqrt[b]*(-3*a + 5*b + b*Sec[c + d*x]^2)*Tan[c
+ d*x])/(3*b^(5/2)*d)

________________________________________________________________________________________

Maple [A]  time = 0.07, size = 127, normalized size = 1.7 \begin{align*}{\frac{ \left ( \tan \left ( dx+c \right ) \right ) ^{3}}{3\,bd}}-{\frac{a\tan \left ( dx+c \right ) }{d{b}^{2}}}+2\,{\frac{\tan \left ( dx+c \right ) }{bd}}+{\frac{{a}^{2}}{d{b}^{2}}\arctan \left ({b\tan \left ( dx+c \right ){\frac{1}{\sqrt{ab}}}} \right ){\frac{1}{\sqrt{ab}}}}-2\,{\frac{a}{bd\sqrt{ab}}\arctan \left ({\frac{b\tan \left ( dx+c \right ) }{\sqrt{ab}}} \right ) }+{\frac{1}{d}\arctan \left ({b\tan \left ( dx+c \right ){\frac{1}{\sqrt{ab}}}} \right ){\frac{1}{\sqrt{ab}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^6/(a+b*tan(d*x+c)^2),x)

[Out]

1/3*tan(d*x+c)^3/b/d-1/d/b^2*tan(d*x+c)*a+2*tan(d*x+c)/b/d+1/d/b^2/(a*b)^(1/2)*arctan(b*tan(d*x+c)/(a*b)^(1/2)
)*a^2-2/d/b/(a*b)^(1/2)*arctan(b*tan(d*x+c)/(a*b)^(1/2))*a+1/d/(a*b)^(1/2)*arctan(b*tan(d*x+c)/(a*b)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^6/(a+b*tan(d*x+c)^2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.53481, size = 807, normalized size = 10.48 \begin{align*} \left [-\frac{3 \,{\left (a^{2} - 2 \, a b + b^{2}\right )} \sqrt{-a b} \cos \left (d x + c\right )^{3} \log \left (\frac{{\left (a^{2} + 6 \, a b + b^{2}\right )} \cos \left (d x + c\right )^{4} - 2 \,{\left (3 \, a b + b^{2}\right )} \cos \left (d x + c\right )^{2} + 4 \,{\left ({\left (a + b\right )} \cos \left (d x + c\right )^{3} - b \cos \left (d x + c\right )\right )} \sqrt{-a b} \sin \left (d x + c\right ) + b^{2}}{{\left (a^{2} - 2 \, a b + b^{2}\right )} \cos \left (d x + c\right )^{4} + 2 \,{\left (a b - b^{2}\right )} \cos \left (d x + c\right )^{2} + b^{2}}\right ) - 4 \,{\left (a b^{2} -{\left (3 \, a^{2} b - 5 \, a b^{2}\right )} \cos \left (d x + c\right )^{2}\right )} \sin \left (d x + c\right )}{12 \, a b^{3} d \cos \left (d x + c\right )^{3}}, -\frac{3 \,{\left (a^{2} - 2 \, a b + b^{2}\right )} \sqrt{a b} \arctan \left (\frac{{\left ({\left (a + b\right )} \cos \left (d x + c\right )^{2} - b\right )} \sqrt{a b}}{2 \, a b \cos \left (d x + c\right ) \sin \left (d x + c\right )}\right ) \cos \left (d x + c\right )^{3} - 2 \,{\left (a b^{2} -{\left (3 \, a^{2} b - 5 \, a b^{2}\right )} \cos \left (d x + c\right )^{2}\right )} \sin \left (d x + c\right )}{6 \, a b^{3} d \cos \left (d x + c\right )^{3}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^6/(a+b*tan(d*x+c)^2),x, algorithm="fricas")

[Out]

[-1/12*(3*(a^2 - 2*a*b + b^2)*sqrt(-a*b)*cos(d*x + c)^3*log(((a^2 + 6*a*b + b^2)*cos(d*x + c)^4 - 2*(3*a*b + b
^2)*cos(d*x + c)^2 + 4*((a + b)*cos(d*x + c)^3 - b*cos(d*x + c))*sqrt(-a*b)*sin(d*x + c) + b^2)/((a^2 - 2*a*b
+ b^2)*cos(d*x + c)^4 + 2*(a*b - b^2)*cos(d*x + c)^2 + b^2)) - 4*(a*b^2 - (3*a^2*b - 5*a*b^2)*cos(d*x + c)^2)*
sin(d*x + c))/(a*b^3*d*cos(d*x + c)^3), -1/6*(3*(a^2 - 2*a*b + b^2)*sqrt(a*b)*arctan(1/2*((a + b)*cos(d*x + c)
^2 - b)*sqrt(a*b)/(a*b*cos(d*x + c)*sin(d*x + c)))*cos(d*x + c)^3 - 2*(a*b^2 - (3*a^2*b - 5*a*b^2)*cos(d*x + c
)^2)*sin(d*x + c))/(a*b^3*d*cos(d*x + c)^3)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec ^{6}{\left (c + d x \right )}}{a + b \tan ^{2}{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**6/(a+b*tan(d*x+c)**2),x)

[Out]

Integral(sec(c + d*x)**6/(a + b*tan(c + d*x)**2), x)

________________________________________________________________________________________

Giac [A]  time = 1.6116, size = 130, normalized size = 1.69 \begin{align*} \frac{\frac{3 \,{\left (\pi \left \lfloor \frac{d x + c}{\pi } + \frac{1}{2} \right \rfloor \mathrm{sgn}\left (b\right ) + \arctan \left (\frac{b \tan \left (d x + c\right )}{\sqrt{a b}}\right )\right )}{\left (a^{2} - 2 \, a b + b^{2}\right )}}{\sqrt{a b} b^{2}} + \frac{b^{2} \tan \left (d x + c\right )^{3} - 3 \, a b \tan \left (d x + c\right ) + 6 \, b^{2} \tan \left (d x + c\right )}{b^{3}}}{3 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^6/(a+b*tan(d*x+c)^2),x, algorithm="giac")

[Out]

1/3*(3*(pi*floor((d*x + c)/pi + 1/2)*sgn(b) + arctan(b*tan(d*x + c)/sqrt(a*b)))*(a^2 - 2*a*b + b^2)/(sqrt(a*b)
*b^2) + (b^2*tan(d*x + c)^3 - 3*a*b*tan(d*x + c) + 6*b^2*tan(d*x + c))/b^3)/d